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Deep learning and remote sensing 
beyond classifying pixels

Devis Tuia, Wageningen University
EO, Science and Society Symposium, 10 October 2019

Geo-information (data) science is about
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People’s favorites

1

2



10/13/2019

2

Applying deep learning with optical remote 
sensing data seems very easy
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Applying deep learning with optical remote 
sensing data seems very easy
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The low hanging fruit is a blessing…
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 We can advance several applications with this technology from CS

[Kellenberger et al., RSE, 2018]

The low hanging fruit is a blessing… in disguise.

 We can advance several applications with this technology from CS

 Massive increase of “DL-in-RS” papers
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[graphic by XX Zhu, 2019]
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The low hanging fruit is a blessing… in disguise.

 We can advance several applications with this technology from CS

 Massive increase of “DL-in-RS” papers

 One could get lost into this jungle.
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How advanced is DL in Geo-info data science?

1. Am I interested only in classifying pixels?

>> then, it is pretty much advanced.
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How advanced is DL in Geo-info data science?

1. Am I interested only in classifying pixels?

>> then, it is pretty much advanced.

2. Do I want to use existing DL for my application?

>> I should be ok.

3. Do I want to use the full power of images (beyond RGB)?

>> oh… this a pre-trained deep net can’t do 

4. Am I forgetting something?
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Geo-information (data) science is ALSO about
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These are less 
straightforward, 
but as 
important!
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Let’s dialogue with images

Page 
13

Based on:

Lobry, Marcos, Murray, Tuia. Remote Sensing Visual Question Answering. 
IGARSS 2019, Yokohama

We are good at solving single tasks

14

13

14



10/13/2019

8

We are good at solving single tasks
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How many cars?

[Lobry and Tuia, JURSE 2019; Lang et al., LPS 2019]

We are good at solving single tasks
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Are there trees?

[Audebert et al., Maggiori et al.; Volpi and Tuia; …]
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We are not very good at reacting to 
unforeseen questions
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Are there trees?

How many cars?

Is it Paris?
Am I in a city?

What is the road %?

ANSWER

But this has great potential.

 Non-experts are … non technical experts.

 Non-experts want answer to specific questions.

 Non-experts want to formulate questions as sentences.
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What do we need?

 For web-search it works a bit like that.
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What do we need?

 For web-search it works a bit like that.

 With satellite images it just doesn’t work

(it’s normal. It wasn’t built for that)

21

But what if you could… ask questions to 
remote sensing images?

22

Source: CS unplugged.
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Remote sensing visual question answering (RSVQA)

23[Lobry, Marcos, Murray, Tuia, IGARSS 2019]

An Image
(in pixels)

A question
(in English)

A
n

an
sw

er
Remote sensing visual question answering (RSVQA)

24[Lobry, Marcos, Murray, Tuia, IGARSS 2019]
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Remote sensing visual question answering (RSVQA)

25[Lobry, Marcos, Murray, Tuia, IGARSS 2019]

Visual part: ResNet-152 (He et al., CVPR 2016)

26

25

26



10/13/2019

14

Visual part: ResNet-152 (He et al., CVPR 2016)
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CAR

Visual part: ResNet-152 (He et al., CVPR 2016)
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Visual part: ResNet-152 (He et al., CVPR 2016)
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Visual part: ResNet-152 (He et al., CVPR 2016)
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Visual part: ResNet-152 (He et al., CVPR 2016)

31

2048-dimensional vector. Encoding all this

Remote sensing visual question answering (RSVQA)

32[Lobry, Marcos, Murray, Tuia, IGARSS 2019]
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Introducing remote sensing visual question 
answering (RSVQA)

33[Lobry, Marcos, Murray, Tuia, IGARSS 2019]

Language part: skip-thoughts (Kiros et al., NIPS)

 We want to encode a sentence in a fixed length vector representation

 We use a method from the literature, the skip-thoughts model

 Given a sentence, it predicts the previous and following one in a text

34[http://sanyam5.github.io/my-thoughts-on-skip-thoughts/]
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Language part: skip-thoughts (Kiros et al., NIPS)

 We want to encode a sentence in a fixed length vector representation

 We use a method from the literature, the skip-thoughts model

 Given a sentence, it predicts the previous and following one in a text

 It is based on recurrent nets

35

A 1200-dimensional vector

[http://sanyam5.github.io/my-thoughts-on-skip-thoughts/]

Remote sensing visual question answering (RSVQA)

36[Lobry, Marcos, Murray, Tuia, IGARSS 2019]
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How do we train this monster?

 We created a dataset of 

- Sentinel-2 images (RGB)

- 9 scenes

- 772 tiles (256 x 256)

- OpenStreetMap layers

- Covers the whole Netherlands

37

How do we train this monster?

 We generated 77’232 {image, question, answer} triplets

38

Check on OSM Random generator
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Remote sensing visual question answering (RSVQA)

41[Lobry, Marcos, Murray, Tuia, IGARSS 2019]

Results – Sentinel 2

79% overall accuracy!

73% if randomizing the image 
part

Count questions less accurate

42

The model can make a good 
distinction between types of 
questions
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Results – Sentinel 2

43

Results – Sentinel 2
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Results – Sentinel 2
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Results – Sentinel 2
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Results – Sentinel 2

47
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 Joins image recognition and natural language 

processing deep models

 Opens use of EO image data to the laymen

 Towards an EO search engine

 A project in collaboration with:

RSVQA - Summary
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49

D. Tuia / 28.08.2019
2002
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D. Tuia / 28.08.2019

One model to answer them all!

2002

Where is it?
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D. Tuia / 28.08.2019

One model to answer them all!

Where is it?
It is Zurich 

Uni. campus

2002
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D. Tuia / 28.08.2019

One model to answer them all!

How many 
buildings are 
in the image? 78

2002
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D. Tuia / 28.08.2019

One model to answer them all!

What buildings What buildings 
have changed 
in the next 10 

years? Those

2002
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One model to answer them all!

What buildings What buildings 
have changed 
in the next 10 

years? Those

2013
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RSVQA - Summary

 RSQA is a new task. We could not do it before deep learning.

 It is far from solved.

 We are putting data and codes online soon.

55

Wrapping up!

 Machine / deep learning are great tools for remote sensing.

 They allow pushing the state of art!

 But…
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Wrapping up!

 Machine / deep learning are great tools for remote sensing.

 They allow pushing the state of art! 

 Most importantly: they allow to imagine new uses of geodata

 It’s hard, but this is where we can make a difference.

57

Thanks!
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Contact me!

devis.tuia.googlepages.com (with links to codes!)

devis.tuia@wur.nl

We are organizing IGARSS 2021
in the lowlands!

- Want to be an exhibitor?
- Want to sponsor?
- Want to participate? 
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